Valeriya S. Velezheva*, Albert G. Kornienko, Sergey V. Topilin, Ascar D. Turashev, Alexander S. Peregudov, and Patrick J. Brennan ${ }^{\text {a }}$

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str, 119991 GSP-1 Moscow, Russia
Fax: (7-095)135-5085
E-mail: vel@ineos.ac.ru
${ }^{\text {a }}$ Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682 U.S.A Fax: (970) 491-1815. E-mail: Patrick.Brennan@ColoState.edu Received August 5, 2005

Abstract

A novel method for Lewis acid catalyzed Nenitzescu indole syntheses of 5-hydroxyindoles bearing different substituents in positions 1 (Alk, Bn, Ar), 2 (Me, Et, Ph), and 3 (COOEt, COMe, CONHPh) as well as tricyclic derivatives are reported. The method is simple, rapid, efficient, and allows preparation of hydroxyindoles from 1,4-benzoquinone and enamines in good to excellent yields with the use of low-polar solvents in the presence of weak Lewis acids catalysts. The formation of 5-hydroxyindoles under such mild conditions is explained in terms of a non-redox mechanism.

J. Heterocyclic Chem., 43, 873 (2006).

Introduction.
5-Hydroxyindoles are found in nature and display a wide variety of biological activities [1,2]. A series of polysubstituted 5-hydroxyindole-based agents have been developed recently including the antiviral and immunomodulatory drug arbidol, ethyl 6-bromo-4-dimethyl-aminomethyl-5-hydroxy-1-methyl-2-phenylthio-methyl-indole-3-carboxylate hydrochloride [3] (and its 4-substituted derivatives [4]), as well as compounds of potential value as drugs. For example, N-benzyl substituted analogues of the anti-inflammatory drug indometacin and indometacin-related N -benzyl indoleacetamide exhibit selective cyclooxygenase (COX-2) inhibitory [5] and multidrug resistance related-protein 1 (MRP-1) modulatory activities [6,7], respectively. The antitumor agent E 09 (a fully synthetic indolequinone with 1,2,3,5substituent pattern) and its analogues are good substrates for human DT-diaphorase which possibly is a molecular target for enzyme-directed bioreductive drug development [8,9]. Syntheses of medicinally interesting 2,4-diamino$8 H$-pyrimido[4,5-b]indol-6-ols were carried out recently via the Nenitzescu reaction [10].
The discovery of the above synthetically challenging and medicinally useful compounds has intensified the search for new effective drugs with broad clinical applications. The Nenitzescu reaction followed by functional group interconversions has proved to be the
simplest synthetic entry into 5-hydroxyindole-based key intermediates of pharmacologically active molecules and drugs [11,12], including those cited above. For example, the facile synthesis of an advanced E 09 intermediate comprises five steps including the Nenitzescu indolization, in contrast to the 15 -step synthesis starting from 3-chlorophenol [13]. The reaction, as well as Fisher indole synthesis, plays a prominent role in classical indole ring formation due to readily available precursors. The Fisher indolization, with rare exceptions, proceeds smoothly and furnishes good yields of target products but is very seldom suitable for preparation of polysubstituted 5-hydroxyindoles [14]. On the contrary, the Nenitzescu reaction, in principle, provides the possibility of solving the latter problem to a great extent. However the reaction has been fickle since at times it proceeds with good yields of indoles while at other times yields are low or the reaction may even fail altogether [15]. It was noted that the Nenitzescu reaction is highly affected by the nature of the substituents on the starting compounds and the reaction medium [5,7,9,15,16]. The 5-hydroxy derivatives of 3-acylbenzofurans are often obtained instead of the corresponding 3-acyl-5-hydroxyindoles. In many cases, the simultaneous formation of indole and benzofuran derivatives has been observed [15]. The scope of the reaction has mainly been restricted to the synthesis of 5hydroxyindoles with 3-carboxylic ester groups. With
those, however, being at other times, low [5,7,9,10,1618]. The corresponding N -benzylaminoacrylic esters when reacted with benzoquinone in nitromethane gave 2 -methyl-1-benzyl-5-hydroxyindole-3-carboxylates in 47\% yield and its 2-ethyl homologue in 53\% yield [7]. Moreover, under such conditions the reaction goes slowly ($16-48 \mathrm{hr}$) and fails altogether with enaminoanilides as enamino components in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ [19]. Even as lately as 2002, ethyl 5-hydroxy-2-propyl-indole-3-carboxylate was reported to be obtained by the Nenitzescu reaction in acetic acid, in 6% yield only [12]. Thus, large-scale production of the Nenitzescu indoles should be expensive. Previously, the application of the Nenitzescu reaction was somewhat limited due to not only low yields of 5hydroxyindoles, but also difficulties in their isolation as pure compounds because of contamination with numerous by-products including those of characteristic dark red colour [15].

Recently, advances in the efficiency of the Nenitzescu indole synthesis were made. These came from the choice of proper solvents and the application of a solid-phase method described by Ketcha et al. [16]. The authors were the first to solve the problem of regioselective synthesis of 1,2,3,6pentasubstituted 5-hydroxyindoles via the reaction of mono-substituted quinones with the corresponding enaminoamides. However, this solid-phase method employing nitromethane as the solvent and applied for the preparation of only 5 -hydroxyindole 3-carboxamides, does not seem entirely satisfactory since it is a multi-stage procedure, employs hazardous and expensive chemicals and, in some cases, gives low yields of target 5hydroxyindoles. Hence the problem of 5-hydroxyindole yields still remains topical. All of this underlines the need for a flexible strategy that could reduce the reaction time, provide good yields of 5-hydroxyindoles and use inexpensive reagents and solvents.

In order to develop improved methods we dwelt on catalytic interactions of 1,4-benzoquinone $\mathbf{1}$ with enaminoesters, enaminoketones and enaminoanilide 2a-n, typical enamino components for the reaction. As to the Lewis acid catalyzed reactions of enaminoesters with 1,4-benzoquinones, only those of N -substituted aminofumarates have been reported by Domschke et al. [20]. These aminofumarates react with 1,4-benzoquinone in diethyl ester under $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} 0$ catalysis to afford N -substituted 5-hydroxyindole-2,3-dicarboxylates in $21-90 \%$ yields. Engler et al. extensively used Lewis acid promotion under addition of enol esters and styrenes to benzoquinones and their imines in syntheses of either 2-aryl-2,3-dihydrobenzofurans or 2-aryl-2,3-dihydroindoles, pterocarpanes, and highly substituted tetrahydro- β - or γ-carbolines, and also, benzofuran analogs [21].

Since the Nenitzescu reaction includes two steps of nucleophilic addition (conjugation of an enamino component to quinone and ring closure due to the nitrogen-to-carbonyl carbon addition) one could expect that, as in other similar nucleophilic addition reactions, the application of acidic catalysis would facilitate both of them. We believed that Lewis acids would not impede the interaction of enamines with benzoquinones. We also expected Lewis acids to be most effective for processes conducted in low-polar solvents. At present, nitromethane and AcOH are considered as the best solvents for the Nenitzescu reaction. In these solvents, however, the process occurs via an oxidation-reduction pathway generally marked by the formation, along with 5hydroxyindoles, of many by-products.

Results and Discussion.
We chose the interaction of 3-methylaminocrotonate 2a with quinone 1 furnishing 5-hydroxyindole 3a as the first prototypical reaction. We did obtain high purity indole 3a in good yield (> 80\%) from the reaction carried out in benzene in the presence of catalytic amounts of ZnCl_{2} (Table 1, Scheme 1).

Scheme 1

To assess how catalysts and their quantities, as well as how solvents affect the reaction we also used other Lewis acids $\left(\mathrm{AlCl}_{3}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\right.$, and $\left.\mathrm{ZnI}_{2}\right)$ as well as a protic acid, $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ (TFA), and solvents (toluene, carbon tetrachloride, methylene dichloride). Our experiments demonstrated that in the absence of catalyst, the yields of indole 3a in benzene and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ achieved 30 and 21%, respectively, with the isolated compound purity being < 98% as shown by ${ }^{1} \mathrm{H}$ NMR. Earlier, Kucklender et al. obtained a mixture of indole 3a with the corresponding hydroquinone adduct on heating a benzene solution of the same species [22]. In all cases when we used our method for producing indole 3a (and later on indoles 3b-n) a benzene or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of enamine was gradually added to a boiling solution of an equimolar amount of
quinone $\mathbf{1}$ in the same solvent after introduction of a catalyst. The reaction mixture was then boiled for additional 40-60 minutes (method A). We obtained pure indole 3a in good yields ($80-87 \%$) from the reaction carried out in the presence of catalytic amounts of ZnCl_{2} or ZnI_{2} (1-10 mol \%) (Table 1, entries 3-6, 15-16).

Table 1
Yields of indole 3a depending on catalysts and reaction conditions.

Entry	Solvent	$\begin{aligned} & \mathrm{t}^{[\mathrm{ad]}} \\ & \mathrm{min} \end{aligned}$	$\mathrm{Mp},\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { Catalyst MX } \\ & (\operatorname{mol} \%) \end{aligned}$	Yield \%
1	$\mathrm{C}_{6} \mathrm{H}_{6}$	45	200-203	None	30
2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	40	197-199	None	$21^{[b]}$
3	$\mathrm{C}_{6} \mathrm{H}_{6}$	40	208-209	ZnCl_{2} (8)	81
4	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	60	208-209	ZnCl_{2} (8)	87
5	$\mathrm{C}_{6} \mathrm{H}_{6}$	40	208-209	ZnCl_{2} (1)	82
6	$\mathrm{C}_{6} \mathrm{H}_{6}$	40	208-209	ZnCl_{2} (5)	81
7	$\mathrm{C}_{6} \mathrm{H}_{6}$	40	208-209	ZnCl_{2} (10)	80
8	$\mathrm{C}_{6} \mathrm{H}_{6}$	40	208-209	$\mathrm{ZnCl}_{2}(20)$	80
9	$\mathrm{C}_{6} \mathrm{H}_{6}$	45	207-208	$\mathrm{ZnCl}_{2}(50)$	78
10	$\mathrm{C}_{6} \mathrm{H}_{6}$	60	196-198	ZnCl_{2} (200)	$64^{[b]}$
11	$\mathrm{C}_{6} \mathrm{H}_{6}$	105	195-198	ZnCl_{2} (400)	$37^{[b]}$
12	$\mathrm{C}_{6} \mathrm{H}_{6}$	40	195-198	$\mathrm{ZnCl}_{2}(0.1)$	$42^{[\mathrm{b}]}$
13	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	300	195-198	$\mathrm{ZnCl}_{2}(0.2)$	$55^{[b]}$
14	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	40	197-199	$\mathrm{ZnI}_{2}(0.2)$	$68^{[b]}$
15	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	40	207-208	ZnI_{2} (10)	83
16	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	40	207-208	ZnI_{2} (1)	83
17	CCl_{4}	40	180-190	ZnCl_{2} (8)	$19^{[b]}$
18	toluene	45	195-198	ZnCl_{2} (8)	$67^{[b]}$
19	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	120	177-178	$\mathrm{AlCl}_{3}(1)$	$65^{[b]}$
20	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	60	206-207	AlCl_{3} (8)	65
21	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	60	207-208	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (1)	45
22	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	40	205-206	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (8)	66

[a] method A. [b] the crude indole 3a.
We found the yield of indole 3a to be appreciably dependent on the amount of the catalyst applied. In benzene, high yields of the product, $80-82 \%$, were achieved when ZnCl_{2} was used in amounts of 1-20\% (Table 1). An increase in the amount to $50 \mathrm{~mol} \%$ did not virtually influence the yield (78%) whereas it was reduced to 64% with $200 \mathrm{~mol} \%$ of the catalyst. With 4-fold excess, the yield was noticeably less - 37%. The reaction responded almost similarly to a decrease in the amount of ZnCl_{2} to $0.1 \mathrm{~mol} \%$ producing the product in 42% yield. With this catalyst, the highest indole 3a yield of 87% was reached when quinone $\mathbf{1}$ and enamine 2a were heated in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the presence of $8 \mathrm{~mol} \%$ for 1 hour. We observed a drop in the yield to 55% with a decrease in amount of the catalyst to $0.2 \mathrm{~mol} \%$. The same proved to be valid for the $\mathrm{ZnI}_{2} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ system; reducing the amount of the catalyst from 8 to $0.2 \mathrm{~mol} \%$ lowered the yield from 83 to 68%. With that, prolongation of the heating of the components from 40 minutes up to several hours did not noticeably affect the reaction. However, the best yield (92%) of $\mathbf{3 a}$ was gained when the process was conducted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the presence of ZnI_{2} at $-45^{\circ}--30^{\circ} \mathrm{C}$ for 15 hours (method B). Additional amount of the indole 3a was
contained in the slightly colored mother liquor obtained after separation of the product in the form of a white powder. If the reaction time was limited to 2 hours the yield was reduced to 80%.

The application of Lewis acid catalysis allowed preparation of indoles under conditions milder than those used before. With that, there were neither 5,5dihydroxydiindoles, nor hydroquinone, etc., characteristic of the classical Nenitzescu reaction performed in polar solvents and believed to proceed via the oxidationreduction pattern [15]. Without the catalysts, the reaction either did not go at the low temperatures or produced indole 3a in small yield at heating. When passing from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to both CCl_{4} and toluene, with ZnI_{2} in amount of 8 mol $\%$, the yield decreased to 19 and 67%, respectively. We believe this to have occurred since the reaction mixture was more heterogeneous in these solvents and underwent resinification to a greater extent. When the reaction was carried out by procedure A with AlCl_{3} or $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ as catalysts, the yields of indole $\mathbf{3 a}$ turned out to be moderate. The samples of the crude indole 3a listed under entries 1, 2, 10-14 and 17-19 in Table 1 contained some impurities and their melting points were below that of the pure compounds mentioned under entries 3-9, 15, 16 and 20-22.

The ZnI_{2} catalyzed reaction effected by procedure A was also employed for the synthesis of indoles 3b-n bearing different substituents at 1,2 , and 3 positions of the indole ring (Scheme 1, Table 2). With all enamines 2a-n, the process went smoothly and the direct product crystallization occurred as the reaction progressed. In all cases the best yields of indoles 3a-n (between 62 and 95%) resulted when equimolar amounts of the quinone and enamine were taken.

Table 2

ZnI_{2} catalyzed Nenitzescu Indole 3a-n Synthesis			
Product	Yield $\%$ $[\mathrm{a}]$	$[\mathrm{c}]$	$\mathrm{Mp}\left({ }^{\circ} \mathrm{C}\right)$
3a	83	60^{27}	$208-209$
	$92^{\text {[b] }}$		
3b	77	53^{27}	$204-205$
3c	95	44^{27}	$197-198$
3d	69	53^{27}	$203-204$
3e	67		$172-174$
3f	72	46^{28}	$174-175$
3g	63		$205-207$
3h	78		$195-197$
3i	79	53^{30}	$294-295$
3j	87	30^{30}	$247-248$
3k	77		$243-244$
31	78	53^{29}	$230-231$
3m	76		$292-293$
3n	62		$220-221$

[^0]All indoles obtained are feasible for further use without additional purification. In the case of enaminoester 2d, the yield of 1-phenylindole 3d did not exceed 69% with the lack, however, of isomeric 6-hydroxyindole characteristic of the Nenitzescu reaction in AcOH [15,23]. The reactions with $\mathbf{2 i} \mathbf{i}$-m gave 3-acetyl-5-hydroxyindoles $\mathbf{3 j} \mathbf{- n}$ instead of 5-hydroxybenzofurans typical for the interaction between benzoquinones and enaminoketones in acidic media, e.g., AcOH [15,24]. With TFA taken as an example, we further studied whether protic acid catalysts could be employed in the process. For the reaction of enamine $\mathbf{2 a}$ with quinone $\mathbf{1}$, the results turned out to be temperature dependent. At $-50^{\circ} \mathrm{C}$ to $-45^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, only product 4 was formed in 94% isolated yield whereas a mixture of indole 3a, benzofuran 5, and adduct 4 was obtained on heating (Scheme 2).

Scheme 2

These results prompted us to examine whether indole 3a could be formed from adduct $\mathbf{4}$ in both the TFA and Lewis acid promoted reactions and if so, whether it depended on the presence or absence of benzoquinone and the catalysts at different temperatures. According to Allen's data [15], a hydroquinone adduct was transformed into the corresponding indole in 55% yield in AcOH in the presence of $10 \mathrm{~mol} \%$ benzoquinone via a redox mechanism. We found that without quinone $\mathbf{1}$, adduct 4 did not transform into indole 3a in the presence of ZnI_{2} or TFA in both cases, on heating and cooling. Moreover adduct 4 was left intact in the presence of either 10 or even $100 \mathrm{~mol} \%$ of quinone $\mathbf{1}$ at $-50^{\circ} \mathrm{C}$ to $-30^{\circ} \mathrm{C}$ with or without ZnI_{2}. However, it furnished indole 3a in low yields (21-23\%), when heated in benzene with 10 or 100 mol \% of quinone 1 in the presence or absence of ZnI_{2}. The reaction mixture also contained a rather large amount of brick-red colored products typical for the classical conditions. At the same time, boiling of a benzene solution of adduct $\mathbf{4}$ without quinone $\mathbf{1}$ in the presence of
ZnI_{2} or TFA for 4 h afforded benzofuran $\mathbf{5}$ in 9% and 70% yields, correspondingly.

Thus the experiments showed TFA to be unsuitable as a catalyst for the indole synthesis. However the low temperature reaction in the presence of TFA provided the possibility to obtain pure adduct 4 and to study its behavior under conditions of the Lewis acid catalyzed indolization. This turned out to be important in elucidating the reaction mechanism.

An internal oxidation-reduction mechanism has been proposed and is now commonly accepted for the Nenitzescu reaction [15,25]. It involves the oxidation of an intermediate Michael adduct of type 4 by a quinone. Hence, the high yields of indole 3a secured by us in the ZnCl_{2} or ZnI_{2} catalyzed reactions did not fit in with the redox pattern since adduct 4 either does not react at all or reacts to a small extent under the catalytic conditions. All these findings count in favor of the hypothesis that the catalytic Nenitzescu reaction occurs via a non-redox mechanism presented in Scheme 3.

Scheme 3

The conjugate Michael addition is a reversible process, so that complexing carbonyl oxygen of substrate 1 by the metal atom of a Lewis acid can shift the equilibrium towards intermediate 6 or increase the rate of the direct reaction. This increases the amount of intermediate $\mathbf{6}$, which undergoes fast prototropic isomerization at its imino site to give intermediate 7 with the enamino moiety. The rearrangement seems plausible to proceed owing to the absence of any additional base capable of proton abstraction from the hydroxydienone site of $\mathbf{6}$. By contrast, as shown by Bernatek [26], in the presence of ZnCl_{2} and AcOH , the corresponding hydroxydienone intermediate (formed from quinone 1 and acetoacetic ester) is converted to a type 4 Michael adduct followed by cyclocondensation of the latter into
benzofuran 5, obviously via proton abstraction by AcO^{-}as a base. The benzofuran synthesis is considered to follow a non-redox mechanism. Besides, the closing of the 5membered ring into intermediate $\mathbf{8}$ is favored according to Baldwin's rules (five-Exo-Tet process) and thus, should be quick. The finding already mentioned that the yields of indole 3a were higher in the presence of more weak Lewis acids $\left(\mathrm{ZnCl}_{2}\right.$ or $\left.\mathrm{ZnI}_{2}\right)$ than those in the presence of AlCl_{3} or $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ can be attributed to the ability of the latter to deactivate the enamino component (Table 1). The same effect of deactivation probably occurred when we increased the amounts of ZnCl_{2} or ZnI_{2} up to 4 -fold excess (Table 1).

A general characterization of the target compounds 3a-n was accomplished using ${ }^{1} \mathrm{H}$ NMR spectroscopy. A salient feature in the spectra of these compounds is the appearance of characteristic groups of signals: two doublets ($\delta c a .7 .3$ and 7.4 ppm), a doublet of doublets (δ $c a .6 .7-6.8 \mathrm{ppm}$) or a multiplet ($\delta c a .6 .4-7.8 \mathrm{ppm}$) that are assigned to the protons - 4, 7, and 6 of the 5hydroxyindole ring and protons of one or two aromatic rings attached to positions 1 and/or 2 of the ring, respectively.
Conclusion.
Thus, one can suggest that, depending on the conditions, the Nenitzescu reaction goes via at least two different mechanisms. The first of those is valid for the reactions performed in polar solvents. The alternative is realized when the reactions are conducted in low-polar solvents in the presence of weak Lewis acids. Thus we have defined experimental conditions for the realization of the Nenitzescu reaction via a second, non-redox mechanism that was first theoretically proposed by G. R. Allen in 1966 [27]. On the basis of the latter, we offer a simple and rapid method to afford polysubstitited 5-hydroxyindoles in good to excellent yields based on a catalytic version of the Nenitzescu reaction and applicable to a variety of enamines; the method does not require expensive solvents. The products obtained are of high purity so that they can be further used without purification.We think that the method will be useful for those chemists who are in search of biologically active 5-hydroxyindole derived compounds.

EXPERIMENTAL

Materials.
1,4-Benzoquinone, $\mathrm{ZnCl}_{2}, \mathrm{ZnI}_{2}, \mathrm{AlCl}_{3}$, and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ were purchased commercially and used as received $\left(\mathrm{ZnCl}_{2}\right.$ was dried before used). Ethyl 3-methylaminocrotonate [28] 2a, ethyl 3-aminocrotonate [29] 2b, ethyl 3benzylaminocrotonate [30] 2c, ethyl 3-phenylaminocrotonate [31] 2d, ethyl 3-methylamino-2-pentenoate [32]

2e, ethyl-3-aminocinnamate [33] 2f, ethyl-3-methylaminocinnamate [34] 2g, ethyl 2-(hexahydro-2H-azepin-2-yliden)-acetate [35] 2h, 4-amino-pent-3-en-2-one [36] $\mathbf{2 i}$, 4-methylamino-pent-3-en-2-one [37] 2j, 4-benzyl-amino-pent-3-en-2-one [38] $\mathbf{2 k}$, 4-anilino-pent-3-en-2-one [39] 2l, 4-(4-bromophenylamino)-3-penten-2-one [38] 2m, 3-benzylamino-crotonanilide [40] 2n were prepared according to literature procedures.

General Methods.
The ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker AMX - 400 spectrometer at 400 MHz . The chemical shifts are reported in the δ scale (ppm) basing on the residual proton signal from $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}(\delta 2.50)$.

General Procedure for the Synthesis of 5-Hydroxyindoles 3a-n (Method A).

To a solution of quinone $\mathbf{1}(1.08 \mathrm{~g}, 10.00 \mathrm{mmoles})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 ml) was added $\mathrm{ZnI}_{2}(0.32 \mathrm{~g}, 1.00 \mathrm{mmole})$. The temperature was raised to boiling, and a solution of enamine 2a-n (10 mmoles) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added drop by drop at stirring for 5-10 minutes. The mixture was then stirred under boiling for 40 minutes and cooled to 0 5° for 2-3 hours. The precipitated crystals were filtered off and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 1 \mathrm{ml})$ and acetone (2×1 $\mathrm{ml})$ (Scheme 1, Tables 1, 2).

Ethyl 1,2-dimethyl-5-hydroxy-indole-3-carboxylate (3a).
Method A. To a solution of 1,4-benzoquinone $(1.08 \mathrm{~g}$, 10.00 mmoles) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ was added $\mathrm{ZnCl}_{2}(1.11 \mathrm{~g}$, 8.00 mmoles). The resulting mixture was heated to boiling and then a solution of enamine $\mathbf{2 a}(1.43 \mathrm{~g}, 10.00$ mmoles) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added drop by drop at stirring for 510 minutes. The mixture was stirred under boiling for additional 40 minutes and cooled to $0-5^{\circ}$ for $2-3$ hours. The precipitated crystals were filtered off and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 1 \mathrm{ml})$ and acetone ($2 \times 1 \mathrm{ml}$) to afford 2.03 g (87%) of $\mathbf{3 a}, \mathrm{mp} 208-209^{\circ}$ (Table 1, entry 4); 209° according to [41]; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO-d d_{6} : $\delta 1.33$ (t, 3H, CH_{3}), $2.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-2\right.$), $3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 4.24\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.65(\mathrm{dd}, 1 \mathrm{H}, \mathrm{ArH}-6)$, 7.26 (d, 1H, ArH-7), 7.35 (d, 1H, ArH-4), 8.92 (s, 1H, OH).

Method B. To a solution of 1,4-benzoquinone ($1.08 \mathrm{~g}, 10.00$ mmoles) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ was added $\mathrm{ZnI}_{2}(0.32 \mathrm{~g}, 1.00 \mathrm{mmole})$. After cooling the mixture to $-30--45^{\circ}$ a solution of $\mathbf{2 a}(2.86 \mathrm{~g}$, 20.00 mmoles) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added drop by drop at stirring for 6 minutes. The mixture was then stirred at -30° for 15 hours. The precipitated crystals were filtered off and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 1 \mathrm{ml})$ and acetone ($2 \times 1 \mathrm{ml}$) to afford $2.14 \mathrm{~g}(92 \%)$ of the product, $\mathrm{mp} 208-209^{\circ}$; the ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum was suitable.

Ethyl 2-(2,6-dioxyphenyl)-3-methylaminocrotonate (4).
To a solution of 1,4-benzoquinone ($2.16 \mathrm{~g}, 20.00 \mathrm{mmoles}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ was added TFA $(0.2 \mathrm{ml})$ and then, after cooling to $-45^{-}-50^{\circ}$, a solution of methylaminocrotonate 2 a (3 ml , 20.00 mmoles) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was added drop by drop at stirring for 5-10 minutes. The mixture was further stirred at -30° for 17 hours. The precipitated crystals were collected by filtration and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 1 \mathrm{ml})$ and acetone (2×1 $\mathrm{ml})$. The product was recrystallized from MeOH to afford 4.70 g (94%) of $4, \mathrm{mp} 138-139^{\circ}$; 137-138 ${ }^{\circ}$ according to [42]; ${ }^{1} \mathrm{H} \mathrm{nmr}$
(DMSO-d ${ }_{6}$): $\delta 1.06\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.66\left(\mathrm{~s}, 3 \mathrm{H},=\mathrm{CCH}_{3}\right), 2.89(\mathrm{~d}$, $3 \mathrm{H}, \mathrm{NCH}_{3}$), $3.90\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.31(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ArH}-3), 6.43$ (dd, 1H, ArH-5), 6.55 (d, 1H, ArH-6), 7.99 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}$), 8.47 (s , $1 \mathrm{H}, \mathrm{OH}), 9.29$ (br s, 1H, NH).

Interaction of 1,4-Benzoquinone $\mathbf{1}$ and Ethyl 3-methylaminocrotonate $\mathbf{2 a}$ in the presence of TFA on heating.
To a solution of $\mathbf{1}(2.16 \mathrm{~g}, 20.00 \mathrm{mmoles})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ was added TFA $(0.15 \mathrm{ml})$. The solution was heated to boiling, and a solution of $\mathbf{2 a}(2.86 \mathrm{~g}, 20.00 \mathrm{mmoles})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added drop by drop under stirring for 6 minutes. The mixture was then stirred at 40° for 40 minutes and cooled to $0-5^{\circ}$ for 2 hours. The precipitated crystals were collected by filtration and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 1 \mathrm{ml})$ and acetone ($2 \times 1 \mathrm{ml}$). The solid (2.14 g) contained 27% of indole $\mathbf{3 a}$ and 18% of adduct 4 and 52% of benzofuran 5 as shown by the comparison between the integral intensities of 2- CH_{3} group signals for $\mathbf{3 a}(\delta 2.66), 5 \delta$ 2.68), and adduct $4(\delta 1.66)$ in the ${ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum. The mother liquor was dried in vacuo, the solid residue washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \times 0.5 \mathrm{ml}$) and acetone ($2 \times 0.5 \mathrm{ml}$) to give ethyl 5-hydroxy-2-methyl-benzofuran-3-carboxylate 5 , isolated yield $0.64 \mathrm{~g}(14 \%)$, $\mathrm{mp} 142-144^{\circ}$. 143-144 according to [43]; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO-d ${ }_{6}$): δ $1.35\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.31\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.73$ (dd, 1H, ArH-6), 7.25 (d, 1H, ArH-7), 7.36 (d, 1H, ArH-4), 9.35 $(\mathrm{s}, 1 \mathrm{H}, \mathrm{OH})$. The filtrate contained unidentified products.

Interactions of Adduct $\mathbf{4}$ with ZnI_{2} or TFA.

To a solution of 0.50 g (2 mmoles) of aminocrotonate $\mathbf{4}$ in 80 ml of benzene was added $\mathrm{ZnI}_{2}(0.064 \mathrm{~g}, 0.2$ mmoles), and the reaction mixture was then stirred for 40 minutes at boiling. The solvent was evaporated in vacuo. The mixture contained 81% of starting adduct $\mathbf{4}$ and 9% of benzofuran 5 . It was displayed by the comparative analysis of signals from the $2-\mathrm{CH}_{3}$ and $\mathrm{N}-\mathrm{CH}_{3}$ groups of adduct 4 at $\delta 1.66$ and 2.89 accordingly and that from the $2-\mathrm{CH}_{3}$ group of benzofuran 5 at $\delta 2.68$ in the ${ }^{1} \mathrm{H}$ nmr spectrum. The reaction carried out with the same amounts of 4 and the solvent in the presence of TFA ($0.15 \mathrm{ml}, 0.2$ mmoles) produced 0.31 g (70% isolated yield) of benzofuran 5 after 4 hours boiling.

Interaction of Adduct 4 with 1,4-Benzoquinone.

To a solution of 0.50 g (2 mmoles) adduct 4 in 80 ml of benzene was added $\mathrm{ZnI}_{2}(0.064 \mathrm{~g}, 0.2$ mmoles) and then, under boiling and stirring, a solution of 1,4 benzoquinone $(0.216 \mathrm{~g}, 2$ mmoles) in benzene (5 ml). The mixture was stirred for additional 40 minutes, allowed to cool down to room temperature and left overnight. The precipitated crystals were collected by filtration and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 1 \mathrm{ml})$ and acetone ($2 \times 1 \mathrm{ml}$) to afford $0.11 \mathrm{~g}(23 \%)$ of the crude indole 3a, $\mathrm{mp} 198-201^{\circ}$. Under the same conditions in the presence of 0.022 g , (0.20 mmoles) of 1,4 benzoquinone indole $\mathbf{3 a}$ was obtained in 21% yield. Without ZnI_{2}, in both cases, mixtures of compounds containing indole 3a were obtained as determined by ${ }^{1} \mathrm{H} \mathrm{nmr}$ analysis basing on signals of the $2-\mathrm{CH}_{3}$ group at δ 2.66 and the $\mathrm{N}-\mathrm{CH}_{3}$ group at $\delta 3.64$.

Ethyl 2-ethyl 5-hydroxy-1-methyl-indole-3-carboxylate (3e).
Isolated as a colorless solid, mp 172-174 ${ }^{\circ}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO$\left.\mathrm{d}_{6}\right): \delta 1.18\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.35\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.13(\mathrm{q}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) 3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 4.25\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)$,
6.69 (dd, 1H, ArH-6), 7.29 (d, 1H, ArH-7), 7.37 (d, 1H, ArH-4), 8.95 (s, 1H, OH).

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{3}: \mathrm{C}, 67.94 ; \mathrm{H}, 6.87 ; \mathrm{N}, 5.66$. Found: C, 67.97; H, 7.01; N, 5.64.

Ethyl 5-hydroxy-1-methyl-2-phenyl-indole-3-carboxylate (3g).
Isolated as a colorless solid, mp 205-207 ${ }^{\circ}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO$\left.\mathrm{d}_{6}\right): \delta 1.05\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 4.02(\mathrm{q}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 6.78 (dd, $1 \mathrm{H}, \mathrm{ArH}-6$), 7.36-7.49 (m, 7H, ArH), 9.10 (s, $1 \mathrm{H}, \mathrm{OH}$).
Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{3}$: C, 73.22; $\mathrm{H}, 5.76 ; \mathrm{N}, 4,75$. Found: C 73.00; H 5.68; N 4.74.
Ethyl 8-hydroxy-2,3,4,5-tetrahydro-1 H-azepino[1,2- a]indole-11-carboxylate ($\mathbf{3 h}$).
Isolated as a colorless solid, mp 195-197 ${ }^{\circ}$; ${ }^{1} \mathrm{H} \mathrm{nmr} \mathrm{(DMSO-}$ $\left.\mathrm{d}_{6}\right): \delta 1.33\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 1.80-4.00\left(\mathrm{~m}, 8 \mathrm{H}, 4 \mathrm{CH}_{2}\right), 4.24$ (m, 4H, $2 \mathrm{CH}_{2}$), 6.65 (dd, 1H, ArH-6), 7.32 (d, 1H, ArH-7), 7.36 (d, $1 \mathrm{H}, \mathrm{ArH}-4), 8.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$.
Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}: \mathrm{C}, 70.33 ; \mathrm{H}, 6.96 ; \mathrm{N}, 5.13$. Found: C, 70.25; H, 6.99; N, 5.16.

3-Acetyl-1-benzyl-5-hydroxy-2-methylindole ($\mathbf{3 k}$).
Isolated as a colorless solid, mp 243-244 ${ }^{\circ}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSOd_{6}) : $\delta 2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.66$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 5.45 ($\mathrm{s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 6.59-7.45(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 9.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$.
Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}$: C, 77.42; H, 6.09; N, 5.02. Found: C, 77.39; H, 6.07; N, 4.99.

3-Acetyl-1-(4-bromophenyl]-5-hydroxy-2-methylindole (3m).
Isolated as a colorless solid, mp 243-244 ${ }^{\circ}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO$\left.\mathrm{d}_{6}\right): \delta 2.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.45(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 6.59-7.45(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 9.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$.

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}$: C, $77.42 ; \mathrm{H}, 6.09 ; \mathrm{N}, 5.02$. Found: C, 77.39; H, 6.07; N, 4.99.

1-Benzyl-5-Hydroxy-2-methylindole-3-carboxanilide (3n).
Isolated as a colorless solid, mp 292-293 ${ }^{\circ}$; ${ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO$\left.\mathrm{d}_{6}\right): \delta 2.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.40-7.84(\mathrm{~m}, 7 \mathrm{H}$, $\mathrm{ArH}), 9.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$.

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrNO}_{2}$: $\mathrm{C}, 59.30 ; \mathrm{H}, 4.07$; N, 4.07. Found: C, 59.36; H, 4.04; N, 3.99 .

Acknowledgements.
The authors would like to thank Dr. Yu. Lyakhovetsky for his assistance in speculations concerning the nonredox Nenitzescu reaction mechanism. Financial support provided by the U.S. Civilian Research \& Development Foundation (RB 2 2032) and Russian Foundation for Basic Research (01-03-332518) is greatfully acknowledged.

REFERENCES

[1] H. Y. Meltzer, Neuropsychopharmacology, 21, 106 (1999); B. E. Leonard, CNS Drugs, 4, 1 (1995); T. C. R.Vijayalaxmi, C. R. Thomas, J. R. Reiter and S. H. Terence, J. Clin. Oncol., 20, 2575 (2002); S. Kaneko, K Okumura , Y. Numaguchi , H. Matsui, K. Murase, S. Mokuno, I. Morishima, K. Hira, Y. Toki, T. Ito and T. Hayakawa. Life Sciences, 67, 101 (2000).
[2] R. D. E. Sewell, in "Introduction to the Principles of Drug Design and Action", H. J. Smith ed.; Harwood Academic Publishers, Amsterdam, B.V., 1998, pp 391-410.
[3] T. A. Gus'kova, Pharmaceutical Chemistry Journal, 35, 527 (2001), Springer Verlag New York; J. A. McCullers, Expert Opin. on Investigational Drugs, 14, 305 (2005), Ashley Publications; R. G. Glushkov, T. A. Gu'skova, Pharm. Chem. J. (Engl. Trans.), 33, 115 (1999).
[4] D. Wang, Y. U. De Sheng, F. Qin, L. Fang and P. Gong, Chinese Chem. Lett., 15, 19 (2004).
[5] Y. Leblanc, W. C. Black, C.-C. Chan, S. Charleson, D. Delorme, D. Denis, C. Bayly, J. Y. Gauthier, R. Grimm, R. Gordon, D. Guay, P. Hamel, S. Kargman, C. K. Lau, J. Mancini, M. Ouellet, D. Percival, P. Roy, K. Skorey, P. Tagari, P. Vickers, E. Wong, L. Xu and P. Prasit, Bioorg. Med. Chem. Lett., 6, 731 (1996).
[6] A. Roller, O. K. Bahr, J. Streffer, S. Winter, M. Heneka, M. Deininger, R. Meyermann, U. Naumann, E. Gulbins and M. Weller, Biochem. and Biophys. Res. Comm., 259, 600 (1999).
[7] A. R. Maguire, S. J. Plunkett, S. Papot, M. Clynes, R. O’ Connor and S. Touhey, Bioorg. Med. Chem., 9, 745 (2001).
[8] R. M. Philips, M. A. Naylor, M. Jaffar, S. W. Doughty, S. A. Everett, A. G. Breen, G. A. Choudry and I. J. Stratford, J. Med. Chem., 42, 4071 (1999).
[9] J. M. Pawlak, V. V. Khau, D. R. Hutchinson and M. J. Martinelli, J. Org. Chem., 61, 9055 (1996).
[10] B. Dotzauer and R. Troschutz, Synlett, 1039 (2004).
[11] H. D. Beall, S. Winski, E. Swann, A. R. Hudnott, A. S. Cotteril, N. O'Sullivan, S. J. Green, R. Bien, D. Siegel, D. Ross and C. J. Moody, J. Med. Chem., 41, 4755 (1998).
[12] T. M. Bohme, C. E. Augelli-Szafran, H. Hallak, T. Pugsley, K. Serpa and R. D. Schwarz, J. Med. Chem., 45, 3094 (2002).
[13] M. A. Naylor, M. Jaffar, J. Nolan, M. A. Stephens, S. Butler, K. B. Patel, S. A. Everett, G. E. Adams and I. J. Stratford, J. Med. Chem., 40, 2335 (1997).
[14] R. J. Sundberg, in Indoles. Best synthetic methods series. Academic Press, New York, pp 54-63 (1996); N. N. Suvorov, V. G. Avramenko, V. N. Shkilkova and L. I. Zamyshlyaeva, British Patent 1.174.034 (1968); Chem. Abstr., 66814m (1970).
[15] G. R. Allen, in Org. React., 1973, 20, pp 337-454.
[16] D. M. Ketcha, L. J. Wilson and D. E. Portlock, Tetrahedron Lett., 41, 6253 (2000).
[17]M. Kinugawa, H. Arai, H. Nishikawa, A. Sakaguchi, T. Ogasa, S. Tomioka, M. Kasai, J. Chem. Soc., Perkin Trans. 1, 2677 (1995).
[18] J. B. Patrick and E. K. Saunders, Tetrahedron Lett., 20, 4009 (1979).
[19] E. K. Panisheva, L. M. Alekseeva, A. S. Shashkov, V. G. Granik, Chem. Heterocycl. Comp. (Russ.), 8, 1164 (2003).
[20] G. Domschke, J. Prakt. Chem., 311, 807 (1969).
[21] T. A. Engler and J. Wanner, Tetrahedron Lett., 38, 6135 (1997); T. A. Engler, K. O. Lynch, W. Chai and S. P. Meduna, Tetrahedron Lett., 36, 2713 (1995); T. A. Engler, M. A. Letavic, R. Iyengar, K. O. LaTessa and J. P. Reddy, J. Org. Chem., 64, 2391 (1999).
[22] U. Kucklander, Tetrahedron., 29, 921 (1973).
[23] V. I. Shvedov, E. K. Panisheva, T. F. Vlasova and A. N. Grinev, J. Gen. Chem. USSR (Engl. Trans.), 9, 1225 (1973).
[24] G. S. Gadaginamath, R. R. Kavali and S. R. Pujar, Synthetic Comm., 33, 2285 (2003).
[25] J. J. Li, in Name Reactions: A Collection of Detailed Reaction Mechanisms, Springer, Berlin, 2002, p. 255.
[26] E. Bernatek and T. Ledaal, Acta Chem. Scand., 12, 2053 (1958).
[27] J. R. Allen, Jr. C. Pidacks, and M. J. Weiss, J. Am. Chem. Soc., 88, 2536 (1966).
[28] E. Knoevenagel, E. Reinecke, Chem. Ber., 32, 423 (1899).
[29] M. C. Bagley; J. W. Dale, J. W. Bower, Synlett, 1149 (2001).
[30] R. Moehlau, Chem. Ber., 27, 3377 (1894).
[31] S. Coffey, J. K. Thomson, F. J. Wilson, J. Chem. Soc., 856 (1936).
[32] J. Decombe, Ann. Chim., 18, 81 (1932).
[33] M. C. Bagley, C. Brace, J. W. Dale, M. Ohnesorge, N. G.; Phillips, X. Xiong, J. Bower, J. Chem. Soc. Perkin Trans. 1, 14, 1663 (2002).
[34] C. Goldschmidt, Chem. Ber., 29, 105 (1896).
[35] J-P. Celerier, E. L. Deloisy., G. Hommet., P. Maitte, J. Org. Chem., 44, 3089 (1979).
[36] B. Singh, G. Y.Lesher, J. Heterocyclic Chem., 27, 2085 (1990).
[37] A. P. Terent'ev, E. A.Viktorova, B. M. Eselson, A. N. Kost, V. V. Ershov, J. Gen. Chem. USSR (Engl. Transl.), 30, 2402 (1960).
[38] G. R. Cook, L. G. Beholz, J. R. Stille, J. Org. Chem., 59, 3575 (1994).
[39] A. D. Garnovskii, V. L. Abramenko, J. Gen. Chem. USSR (Engl. Transl.), 55, 1630 (1985).
[40] A. N. Grinev, V. N. Ermakova, I. A Mel'nikova, A. P. Terent'ev, J. Gen. Chem. USSR (Engl. Transl.), 31, 2146 (1961).
[41] A. N. Kost, L. G. Iudin, E. J Zinchenko, Chem. Heterocycl. Compd. (Engl. Transl.), 9, 306 (1973).
[42] A. N. Grinev, V. N. Ermakova, A. P. Terent'ev, J. Gen. Chem. USSR (Engl. Transl.), 32, 1928 (1962).
[43] H. L. Mc. Pherson, B. V. Ponder, J. Heterocyclic Chem., 15, 43 (1978).

[^0]: [a] method $\mathbf{A} ;[\mathrm{b}]$ method $\mathbf{B} ;[\mathrm{c}]$ max. reported.

